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Abstract
The observation of periodic responses after absorption of ultrashort laser pulses in condensed
media and at solid interfaces is a common phenomena in various time-resolved spectroscopic
methods using laser pulses shorter than the period of the coherently excited vibrations.
Normally these signals have to be separated from strong slowly decaying backgrounds related
to the creation of nonequilibrium carriers. The recording normally requires either a small period
of time or lacks temporal resolution to obtain the good signal-to-noise ratio necessary for the
observation of the vibrations. The standard method used for the analysis of the data is a
curve-fitting routine to the time-domain data. However, the disadvantage is the necessity to
estimate the number of spectral components before fitting. This paper will introduce under
which conditions linear prediction and singular value decomposition in combination with an
iterative nonlinear fitting in the time and spectral domain may extract an unknown number of
spectral components including amplitude, lifetime, frequency and phase. Such information is
essential to unambiguously evaluate the dominant optical excitation process, the phase of the
initial displacement, the symmetry of the excited vibrational mode and the specific vibration
generation process.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years, many time-resolved vibrational spec-
troscopy experiments were carried out, using ultrafast lasers
in combination with pump probe techniques. Commonly, in
those experiments the pulses from a laser source are split up
by means of a interferometric set-up resulting in a pump pulse
to excite the sample under investigation (such as stimulation
of vibrational modes in lattices or adsorbates) and a second,
delayed pulse to interrogate the sample’s response. By scan-
ning through different delays, one can retrieve complete in-
formation about the dynamics on a femtosecond timescale.
Depending on the sample, the excitation pulse is creating a

nonequilibrium carrier distribution which directly affects op-
tical properties such as reflectivity, absorption or the second-
order nonlinear susceptibility χ(2). In this way acoustic breath-
ing mode vibrations of colloidal gold particles [1] and metallic
nanoprisms [2, 3], acoustic phonons in bismuth films on sil-
icon [4] and interface phonons on GaAs semiconductor sub-
strates [5–8] were investigated.

The signal intensities and signal-to-noise ratios (SNR)
are rather small. For example, in reflectivity measurements
on GaAs surfaces the response due to carrier excitation is of
the order of 10−4, the phonon signal in the range of 10−5 of
the overall reflectivity signal [9, 10]. This requires, beside
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being meticulous in reducing noise sources [11], averaging
over many scans. As an accompaniment, either the recorded
data spans only a small period in time or it lacks temporal
resolution. This, of course, directly affects the analysis,
normally accomplished by a fast Fourier transformation of the
apodized data. The resulting problems are spectral distortions,
depending on the apodization function used and the risk of
peak overlapping (the resolution is approximately the inverse
of the signal length).

To overcome this limitation a standard procedure is to
apply a curve-fitting routine to the time-domain data. As a
consequence of the nature of the underlying model, a nonlinear
method has to be used, which needs preferably a good set of
starting parameters to convolute to a solution. So the number
of spectral components has to be estimated before fitting.

In this paper we want to introduce the use of the linear
prediction singular value decomposition (LPSVD) method,
which is a linear routine, in combination with an iterative
nonlinear fitting in the time and spectral domain to extract
spectral components. The LPSVD was introduced by
Kumaresan and Tufts [12] and is used in NMR spectroscopy
to analyze the free induction decays (FID) in pulsed
measurements, in particular in in vivo experiments with low
SNR [13, 14]. To demonstrate the LPSVD and the complete
fitting procedure, we apply it to simulated data and to
results from phonon studies on GaAs(100) using time-resolved
second harmonic generation (TRSHG) experiments done in
our group. The latter we compare to results known from
the literature [5, 6, 8, 9, 15–17]. The advantage of using
this method is that even complex spectral responses can be
analyzed without presuming the number of components and a
far better resolution can be obtained in comparison to normally
used routines in coherent laser experiments. In the first section
the experimental set-up, the software packages used and the
raw results are shown. An initial step which does not occur in
NMR data is the need to separate the phonon signal from the
electronic background prior to further processing. This part
will be discussed in the second section before the LPSVD and
the whole fitting procedure is explained in the third section.
Processing of simulated experimental data is shown in the
following two sections.

2. Experiment and software

2.1. Set-up

For the TRSHG experiments a KML oscillator with a repetition
rate of 95 MHz was used. It delivers pulses with a duration
around 35 fs and a central wavelength tunable between 1.47
and 1.59 eV (780–840 nm). In a Mach–Zehnder interferometer
the pulses were split up in a 80:20 ratio, resulting in a pump
beam with 130 mW, which was chopped and focused on
the sample in a spot of 80 μm. The weaker probe beam
(∼30 mW) was delayed by a translational stage and focused
noncollinearly on the same spot on the sample. After blocking
the fundamental by means of color and interference filters
the probe signal was detected with a cooled Hamamatsu
photomultiplier tube, fed into a FEMTO lock-in amplifier and

Figure 1. Average over 50 scans in p-polarized probe and detection
beam, s-polarized pump configuration of a native-oxide-covered
GaAs(100) sample along the [01̄0] direction.

digitalized by a National Instruments AD converter. By using
wave plates and polarizers in the pump, probe and detection
beam it is possible to access the various tensor elements of the
nonlinear polarization source PNL(2ω).

A GaAs wafer in (100) orientation was obtained from
CrysTec. To remove the protective coating and residues from
processing it was cleaned by ultrasonication in acetone and
isopropyl alcohol. This clean, but still oxide-capped crystal,
was mounted on a rotational stage, which allowed us to scan
different crystal directions. Figure 1 shows the normalized
time signal retrieved by averaging over 50 scans with 10 fs
sampling interval. In this measurement the incoming probe
and detection beam were p-polarized, whereas the polarization
of the pump beam was rotated about 90◦ to s-polarization. The
sample was aligned along the [01̄0] direction.

2.2. Software

For controlling the experiment and recording the data a self-
written C� program was used. Matlab® (R2008b, The
MathWorks, Natick, USA) with Optimization, Curve Fitting
and Signal Processing toolboxes was used to process data.
The LPSVD routine was extracted from the matNMR (Version
3.9.59, JD van Beek) package [18].

3. Separation of background and data processing

As shown in figure 1 the initial carrier excitation response
and the phonon signal completely overlap temporally. When
information about modes with short lifetimes or the initial
phase of a vibration is needed, the separation of both signals
is to be conducted carefully. While the decay can be
modeled by a biexponential function with the two decay
times addressed to electron–electron and electron–phonon
scattering [19], particular attention has to be paid to the initial
rising edge of the signal in the zero delay area and the first
period of the oscillation around 150 fs. Due to coherent
coupling between the pump and probe pulses the signal can
be distorted within the period of the pulse width [20, 21].
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Figure 2. Raw data (a), fit (b) and subtracted phonon signal (c). The
data will be cut at the peak of the fit at 100 fs. A bad overlap of the fit
and the data at delay times <100 fs will lead to additional
oscillations, as can be seen easily.

The shape of this distortion is, depending on the laser pulse,
Gaussian, Lorentzian or sech2. Hence the first oscillation
period could also be attributed to an overshot in the signal
due to convolution of the biexponential function with the
coherent coupling. Furthermore this distortion complicates
the determination of the starting point of the oscillatory part,
which is very important in order to understand the underlying
excitation mechanism. Details about handling of this problem
will be discussed elsewhere. As the scope of this paper is the
use of the LPSVD method, we will, without further discussion,
fit the data signal to a combination of a biexponential and a
Gaussian with the width fixed to the pulse duration of 38 fs
according to our autocorrelation analysis of our laser beam. As
shown in figure 2 the data is cut at the peak position of the fit
at 100 fs. The oscillation period at delay times <100 fs is due
to a bad overlap of fit and data, for the reasons stated above.

After subtraction a locally weighted scatter plot smoothing
(LOWESS), using a least-squares fitting and a first-order
polynomial, is applied to the data to reduce low frequency
components (<1 THz). After that an apodization equation (1)
is applied and a zero filled fast Fourier transformation (FFT) is
performed. The apodization function is chosen to be the same
as in [9], for which no apodization effects have to be considered
when comparing the two results:

A(t) = cos

(
π/2 · t − t0

tend − t0

)
. (1)

For the fitting routine two datasets are used: the apodized
time signal and the concatenated imaginary and real part of the
Fourier transform.

4. LPSVD routine and fitting procedure

For the LPSVD method and the iterative fit, the oscillations are
modeled by a sum of N damped complex sinusoids plus white

noise w(t):

S(t) =
N∑

n=1

[
αn · exp

(
− 1

τn
· t + i2π fn · t

)]
· w(t) (2)

where n = 1, 2, . . . , N, αn is the complex amplitude
describing the real amplitude an and the phase φn , τn is the
damping time and fn the frequency. Thus fitting this model to
experimental data involves 4N variables, where N is unknown
and has to be carefully estimated. Also a good set of starting
parameters is needed.

4.1. LPSVD

The LPSVD method uses linear prediction, either in the
forward or backward direction. The idea is to assume that
any data point in the equally spaced data (i	t; i ∈ N) can be
expressed by its preceding or following points. Equation (3)
expresses the relation for the backward prediction, where qn

is the n th prediction coefficient and M is the number of data
points accounted for in the prediction:

spredicted
i =

M∑
n=1

qnsi+n . (3)

It can be shown that for a signal consisting of N noise-
free oscillations M = 2N data points have to be included in the
prediction, so there are also 2N prediction coefficients [12, 22].
In the presence of noise, this number is increasing.

The prediction parameters can now be fitted to the data
in a linear fashion, without specifying any start values. In
the approach by Kumaresan and Tufts [12] singular value
decomposition (SVD) is used to obtain the parameters. For
this, a Hankel matrix has to be created by taking the dataset
consisting of K points and arranging it in M columns and
K − M + 1 rows in such a way that every row is filled with
values s1+c, . . . , sM+c , where c is the zero-based row index (4):

H =

⎛
⎜⎜⎝

s1 s2 · · · sM

s2 s3 · · · sM+1
...

...
...

sK−M+1 sK−M+2 · · · sK

⎞
⎟⎟⎠ (4)

M has not to be known and can be chosen by roughly
estimating the number of oscillations and concerning M =
2N . Another guideline is trying to make the matrix as square
as possible. The linear prediction can now be expressed with
this matrix by a combination of (3) and (4), using complex
conjugate data:

s = H · q (5)

where s and q are vectors with dimensions K − M + 1 and
M . The next step is to factorize the Hankel matrix H into three
matrices:

H = U · S · V ′ (6)

U and V ′ are a unitary matrix and the conjugate transpose of
a unitary matrix, containing the left and right side singular
vectors, respectively. S is a diagonal matrix, with positive
values in descending order. Those values are equal to the
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square roots of the eigenvalues obtained from H · H ′. For
an ideal noise-free signal the rank of matrix S is equal to the
number of prediction coefficients, hence 2N . With increasing
noise the number of non-zero elements is also increasing, but
they can be easily identified and separated as long as a critical
SNR has not been reached. A common approach is to use
Cadzow filtering to remove noise components and is presented
in [23].

After reducing S one can create an inverted Hankel matrix
by performing

inv(H ) = V · inv(S) · U ′ (7)

and use this to calculate the prediction coefficients by
separating q in equation (5). The last step is to convert the
prediction coefficient to the wanted oscillation parameters.
While the damping times and frequencies can be directly
calculated, the amplitudes and phase information have to be
obtained by another linear square procedure after inserting
the extracted damping times and frequencies into the model
signals [22].

4.2. Fitting procedure

Before the LPSVD is applied to the apodized time data, some
spectral bandpass filtering has to be considered. Our 6 ps long
experimental dataset from figure 1 is sampled with 10 fs and
therefore has a Nyquist length of 50 THz and a resolution of
about 0.16 Thz. But, due to the coherent excitation mechanism,
it is not possible to excite modes with frequencies higher than
that of the pump pulse. This leads to an upper frequency limit
of 20 THz, in a careful approach by taking the autocorrelation
pulse width of 50 fs into account. Also the low frequency side
of frequencies smaller than 3 THz tend to be noisy, in particular
residual electronic excitation components in the signal, which
could not be completely removed by the background fit, may
appear as non-physical ghost frequencies. By excluding these
areas, the performance of the fitting can be improved.

After the filtering LPSVD is applied to analyze the
oscillatory components. In the next section two different cases
are presented. On the one hand, we apply Cadzow filtration to
reduce the diagonal matrix S received from the SVD, while, on
the other hand, we just estimate a large number of oscillations
(M = 20) and let the routine calculate their parameters, even
from those which originate from noise, to show that these noise
signals can also be identified in the final LPSVD results.

In the last step these parameters are fed into the iterative
routine. This routine is a method commonly used [9, 15],
but mostly not described in detail. The idea is to fit
the 4N parameters resulting from the LPSVD procedure
iteratively to the time and frequency domain. Therefore
the frequencies and lifetimes are kept constant and the
amplitudes and phases are fitted in a nonlinear least-squares
sense to the apodized time data by using an apodized form
of (2). The optimized amplitudes and phases are then
fixed parameters in the following fit of the frequencies and
lifetimes to the concatenated imaginary and real parts of the
FFT spectrum. Overall around ten to a thousand complete
circles are performed, depending on the complexity of the

Figure 3. Example of time data and corresponding power spectra of
model signal for three different SNR levels.

signal. By comparing the apodized time signal with an also
apodized model, the effect of apodization should be completely
removed [9].

5. Application to modeled data

In order to elucidate the sensitivity of the result obtained with
our fitting (LPSVD) routine to the SNR of the experimental
data, we shall first discuss model data containing three
oscillatory components similar to those expected in real
experiments on oxide-covered GaAs surfaces. We shall
omit steps related to extraction of the background signal
and removing low frequency components in these tests. To
investigate the effect of noise on the retrieval of oscillatory
components, model signals with increasing amounts of
Gaussian white noise are created (figure 3), based on the
parameters shown in the first three rows in table 1. The noise
is specified as SNR in dB units.

For the noise-free signal the parameters are perfectly
restored: the S matrix consist of six non-zero elements,
resulting in six oscillations where half of them differ just by
the sign of the frequency and thus are to be neglected.

Also for the 100 dB signal all components are extracted
without any special reduction of the S matrix. Only the phase
exhibits slight shifts. When applying the LPSVD without any
filtering to the 30 dB sample it results in the parameters shown
in table 2. Here the real features are still well retrieved but there
are additional components induced by the noise. With this
noise level they can still be removed by looking at their small
amplitudes and comparably high lifetimes. To remove those
components directly inside the LPSVD routine the above-
mentioned Cadzow filtration can be applied. For this the values
of singular values are drawn in figure 4. The diagonal matrix
will now be reduced by rejecting all values with indices larger
than that at the center of the last rising edge. The results of
this step are also shown in table 1. With further increasing
noise the step edge between real oscillations and noise starts to
vanish. More noise signals will enter the LPSVD results and
the quality of the retrieved parameters decreases, especially of
those close to the noise edge. Now the second step in the fitting
procedure, the iterative step, is taken into account. The results

4



J. Phys.: Condens. Matter 22 (2010) 084015 D Hoogestraat and K Al-Shamery

Table 1. Parameters for the model signals taken from real results
from native-oxide-covered GaAs(100) [9] and results for the noisy
model signals retrieved by applying LPSVD only.

SNR
(dB) Amplitude

Damping
time
(ps)

Frequency
(THz) Phase

∞ 220 1.4 8.76 0
300 0.57 8.36 0
100 0.72 7.65 0

100 220 1.39 8.76 6.6 × 10−6

300 0.57 8.35 1.2 × 10−5

110 0.72 7.65 8.1 × 10−6

30 220.8 1.39 8.76 0.01
303 0.57 8.36 0.02
106 0.74 7.65 0.02

10 216 1.48 8.75 0.02
299 0.63 8.33 0.18
156 0.55 7.7 0.20
6.14 0.59 6.83 1.17
...

...
...

...

2 224 1.54 8.71 0.52
302 0.85 8.53 0.52
107 1.12 7.61 0.17
.
..

.

..
.
..

.

..

Table 2. Raw LPSVD results for the 30 dB model signal. The
negative frequency components are already removed.

Amplitude Damping time (ps) Frequency (THz) Phase

220 1.39 8.76 0.01
304 0.56 8.35 −0.03
112 0.68 7.65 0.03

0.94 2.55 4.9 1.78
0.38 9.93 3.91 −1.58
1.54 1.56 3.8 1.98
0.38 8.92 4.3 2.0

for this step are presented in table 3 for the 10 and 2 dB signals.
It is obvious that the restored oscillations are derived from the
original parameters. The noise signals reach higher amplitudes
and become more difficult to distinguish from real signals, even
though the iterative fit in combination with the LPSVD nicely
convolutes to the noisy data as seen in figure 5.

6. Application to GaAs TRSHG experiments

Now we want to apply the routine to an experimental
dataset, which was measured in our group shown in figures 1
and 2. The sample consists of a native-oxide-layer-covered
GaAs(100) crystal with Te n-doping (2 × 1018 cm−3). The
further processing of this data was presented in previous
sections. Here we want to apply the LPSVD method with
Cadzow filtering and the iterative fit. As seen in figure 6 the
transition from noise to signal components is again not sharp.
So we chose a larger number of singular values to remain in
the diagonal matrix S so as not to accidentally remove signal
components. This leads to the signals shown in the first rows
of table 4, from which three seem to be real signals and the

Figure 4. Singular values of the 30 dB model signal.

Table 3. Results for the noisy model signals retrieved by applying
LPSVD and the iterative fit.

SNR (dB) Amplitude

Damping
time
(ps)

Frequency
(THz) Phase

10 225 1.41 8.75 0.01
283 0.64 8.35 0.13
156 0.56 7.66 −0.02
7.8 1.3 11.43 1.96
19 0.84 6.87 −1.32
3.14 9.34 9.96 2.03

2 137 2.15 8.71 0.82
378 0.72 8.54 −0.22
139 0.83 7.63 0.04
24 2.9 10.27 −0.32
44.1 3.26 9.13 −2.47
..
.

..

.
..
.

..

.

others may arise from noise. The iterative fit of the data
is summarized in the lower rows of the same table. Chang
extracted three components in his work on a similar sample
with frequencies, amplitudes and damping times as shown in
the first rows of table 1 [9, 5]. He assigned the mode at 8.8
THz to the LO bulk mode, while the 7.65 THz oscillation
was attributed to the LO bulk and electron-plasma-coupled
mode at the back of the depletion region. Finally in [9] the
mode around 8.65 THz was described as a Fuchs–Kliewer
oscillation, which was later [5] corrected to a not further
specified surface confined mode in the top four layers of the
sample. If we compare this to the results from the first LPSVD
step we find a good agreement for the 8.8 and 7.65 THz modes.
The low amplitude and elevated damping time of our mode at
8.48 THz makes it suspicious. Normally this combination is a
sign of a noise-contributed signal or at least a very weak signal
which is buried in noise. The phases of these modes are all in
the same range. An absolute determination of the phase is not
possible without a reference.

The iterative fit convolutes very well to the spectral and
time signal, but the resulting parameters are in less agreement
with the results from Chang and those received by the pure
LPSVD routine. In particular, the damping times of the LO
bulk and the electron-plasma-coupled mode are decreased. An
exception is the damping time of the uncertain 8.45 THz mode
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Figure 5. Fit in the time and spectral domain to the noisy signal of
2 dB.

Figure 6. Singular values for the experimental dataset.

which is further increased. Finally a high frequency component
at around 9.3 THz is newly found.

7. Summary and conclusion

In this paper we discussed the advantages and limitations
of using a combination of linear prediction singular value
decomposition (LPSVD) with an iterative fitting method
for the analysis of time-resolved phonon spectroscopy
experiments. The key benefit of using LPSVD is that it
delivers the number of oscillatory components contained in
the analyzed signal without any a priori knowledge about
the system. By concatenation of this method with an
iterative nonlinear curve fitting to the temporal and spectral
domains one can extract full spectroscopical data even from
complex signals. The LPSVD is used to supply starting
points for the nonlinear method, which depends on a good
set of starting parameters and a predetermined number of
oscillations. As an example we chose a time-resolved second-
harmonic-generation-based phonon spectroscopy experiment
on GaAs samples, for which a number of not very well
separated surface and bulk phonon modes can be found.
To test the method, simulated datasets consisting of three
phonon modes and white noise were generated. We employed
our method on these data and varied the noise level. For

Table 4. Results for the experimental data using LPSVD with
Cadzow filtration (upper rows) and after application of fitting routine
(lower rows).

Method Amplitude

Damping
time
(ps)

Frequency
(THz) Phase

LPSVD 0.099 1.51 8.80 2.6
plus 0.02 3.55 8.48 2.79
Cadzow 0.045 0.56 7.56 2.96

0.005 1.94 9.8 −0.93
0.003 5.1 7.46 0.51

LPSVD 0.45 0.70 8.88 −3.02
plus 0.03 7.49 8.51 1.74
it. fit 0.14 0.35 7.68 2.3

0.19 0.44 9.28 −0.53
0.068 0.2 6.9 0.27

signals down to 10 dB the spectral components can be
extracted from the LPSVD method directly. For data with a
higher fraction of noise Cadzow filtration inside the diagonal
matrix and the second iterative fitting step become more
important.

Next a real pump probe trace from experiments on
n-doped GaAs(100) crystals done in our workgroup was
analyzed. This signal is more complex due to the fact
that not only the vibration of the lattice contributes to the
change in second-order susceptibility, but also the hot carriers
affect the SHG response. The latter effect is even stronger
by a factor of ten and has to be deconvoluted from the
signal before analyzing. Beside that, the low signal-to-noise
ratio requires averaging over many scans; consequently the
recorded temporal window is small. Here the transition
from real to noise components is not as sharp as in the
simulated signals. Therefore a larger number of components is
accepted in the Cadzow filtration step to avoid cutting potential
important information. The fitting routine nicely reproduces
the experimental dataset in the spectral and time domains. The
LO bulk phonon mode at around 8.7 THz and the electron-
plasma-coupled mode at 7.6 THz could also be found in our
measurements within the resolution limit of 0.16 THz, both
showing slightly smaller lifetimes as described by Chang [9].
The surface-related mode at 8.5 THz, found by Chang [5] is
somewhat unclear due to its small amplitude and quite large
lifetime. Additionally a new, and until now unreported, mode
at around 9.3 THz is clearly visible in the spectrum and is also
found by the fitting routine. An absolute determination of the
phases is not possible without reference; however the phases of
all signals relative to each other can be obtained.

In conclusion the combination of both fitting methods
improves the fitting of complex data from time-resolved
vibrational measurements. Even though at small signal-to-
noise ratios it doesn’t convolute to a noise-free solution, by
looking at the singular values one gets a good measure for
the quality and importance of every single component. It has
also been demonstrated that even close lying modes can be
revealed.
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